From automata to CCS (1/6)

Remove final (not interested in termination), and initial states (assimilate processes with states, hence any state is "initial" relative to the process it is identified with).

Such an automaton deprived from initial and final states is called a labelled transition system, or LTS for short.

From automata to CCS (2/6)

A LTS is given by

- a finite set of states, or P, Q, \ldots,
- a finite alphabet Act whose members are called actions, and
- transitions between them, written $P \xrightarrow{\mu} Q$.

From automata to CCS (3/6)

A LTS together with one of its states, that is, a process, can be described by the following syntax:

$$
P::=\Sigma_{i \in I} \mu_{i} \cdot P_{i} \mid \text { let } \vec{K}=\vec{P} \text { in } K_{j} \mid K
$$

(empty sum denoted by 0)

From automata to CCS (4/6)

$$
\begin{aligned}
& \text { CCS } P::= \\
& \Sigma_{i \in I} \mu_{i} \cdot P_{i} \mid \text { let } \vec{K}=\vec{P} \text { in } K_{j}|K|(P \mid Q) \mid(\nu a) P
\end{aligned}
$$

$$
\text { Synchronization Trees } \quad P::=
$$

$$
\Sigma_{i \in I} \mu_{i} \cdot P_{i}
$$

Finitary CCS $\quad P::=$
$\Sigma_{i \in I} \mu_{i} \cdot P_{i}|(P \mid Q)|(\nu a) P \quad(I$ finite $)$

From automata to CCS (5/6)

in CCS

$$
A c t=L \cup \bar{L} \cup\{\tau\}
$$

(disjoint union), where L is the set of labels, also called names, or channels, and τ is a silent action that records a synchronisation. $\mu \in A c t$, $\alpha \in L \cup \bar{L}, \overline{\bar{\alpha}}=\alpha$

From automata to CCS (6/6)

We write

$$
\Sigma_{i \in I} a_{i} \cdot P_{i}=\left(\Sigma_{i \in I \backslash i_{0}} a_{i} \cdot P_{i}\right)+a_{i_{0}} \cdot P_{i_{0}}
$$

(note that the notation implicitly views sums as associative and commutative - this will be made explicit later)

Labelled operational semantics (1/4)

$$
\begin{aligned}
& P \xrightarrow{\mu} P^{\prime} \quad(\mu \neq a, \bar{a}) \\
& \Sigma_{i \in I} \mu_{i} \cdot P_{i} \xrightarrow{\mu_{i}} P_{i} \quad(\nu a) P \xrightarrow{\mu}(\nu a) P^{\prime} \\
& \frac{P \xrightarrow{\mu} P^{\prime}}{P\left|Q \xrightarrow{\mu} P^{\prime}\right| Q} \frac{Q \xrightarrow{\mu} Q^{\prime}}{P|Q \xrightarrow{\mu} P| Q^{\prime}} \xrightarrow{P\left|Q \xrightarrow{\tau} P^{\prime} \quad Q \xrightarrow{\bar{\alpha}} P^{\prime}\right| Q^{\prime}} \\
& P_{j}[\vec{K} \leftarrow(\text { let } \vec{K}=\vec{P} \text { in } \vec{K})] \xrightarrow{\mu} P^{\prime} \\
& \text { let } \vec{K}=\vec{P} \text { in } K_{j} \xrightarrow{\mu} P^{\prime}
\end{aligned}
$$

Labelled operational semantics (2/4)

τ-transitions (resp. α-transitions) correspond to internal evolutions (resp. interactions with the environment).
Rule COMM involves both.
In λ-calculus, one considers only one (internal) reduction : β.

Labelled operational semantics (3/4)

Example :

$$
P=(\nu c)\left(K_{1} \mid K_{2}\right) \text { where }\left\{\begin{array}{l}
K_{1}=a \cdot \bar{c} \cdot K_{1} \\
K_{2}=b \cdot c \cdot K_{2}
\end{array}\right.
$$

Behaviour: do a and b independently, then τ, then loop.

Labelled operational semantics (4/4)

It is possible to formulate internal reduction in CCS without reference to the environment.

Price to pay : work modulo structural equivalence.

Structural equivalence

$$
\begin{aligned}
& \Sigma_{i \in I} \mu_{i} \cdot P_{i} \equiv \Sigma_{i \in I} \mu_{f(i)} \cdot P_{f(i)} \quad(f \text { permutation }) \\
& P|Q \equiv Q| P \\
& P|(Q \mid R) \equiv(P \mid Q)| R \\
& ((\nu a) P) \mid Q \equiv(\nu a)(P \mid Q) \quad(a \text { not free in } Q) \\
& \text { let } \vec{K}=\vec{P} \text { in } K_{j} \equiv P \tilde{N} j[\vec{K} \leftarrow(\text { let } \vec{K}=\vec{P} \text { in } \vec{K})]
\end{aligned}
$$

Reduction operational semantics (1/2)

$$
\begin{gathered}
P_{1}+a \cdot P\left|\bar{a} \cdot Q+Q_{1} \rightarrow P\right| Q \quad P_{1}+\tau \cdot P \rightarrow P \\
\frac{P_{1} \rightarrow P_{1}^{\prime}}{P_{1}\left|P_{2} \rightarrow P_{1}^{\prime}\right| P_{2}} \quad \frac{P \rightarrow P^{\prime}}{(\nu a) P \rightarrow(\nu a) P^{\prime}} \\
\frac{P_{1} \equiv P_{2} \rightarrow P_{2}^{\prime} \equiv P_{1}^{\prime}}{P_{1} \rightarrow P_{1}^{\prime}}
\end{gathered}
$$

Reduction operational semantics (2/2)

The relations \rightarrow and $\xrightarrow{\tau} \equiv$ coincide.
Exercise CCS 1.1 Prove it, via the following claims:

- If $P \xrightarrow{\mu} P^{\prime}$ and $P \equiv Q$, then there exists Q^{\prime} such that $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \equiv Q^{\prime}$.
- If $P \xrightarrow{\alpha} P^{\prime}$, then $P \equiv(\nu \vec{a})\left(\alpha \cdot Q+P_{1} \mid P_{2}\right)$ and $P^{\prime} \equiv(\nu \vec{a})\left(P_{1} \mid P_{2}\right)$, for some \vec{a}, P_{1}, P_{2}, Q.

Semaphore in CCS

$$
\begin{gathered}
\text { Sem }=\mathrm{P} \cdot \mathrm{~V} \cdot \operatorname{Sem} \\
\operatorname{Sem}\left|\left(\overline{\mathrm{P}} \cdot C_{0} ; \overline{\mathrm{V}}\right)\right|\left(\overline{\mathrm{P}} \cdot C_{1} ; \overline{\mathrm{V}}\right) \\
\rightarrow(\mathrm{V} \cdot \operatorname{Sem})\left|\left(\overline{\mathrm{P}} \cdot C_{0} ; \overline{\mathrm{V}}\right)\right|\left(C_{1} ; \overline{\mathrm{V}}\right) \\
\rightarrow^{\star}(\mathrm{V} \cdot \operatorname{Sem})\left|\left(\overline{\mathrm{P}} \cdot C_{0} ; \overline{\mathrm{V}}\right)\right| \overline{\mathrm{V}} \\
\rightarrow \operatorname{Sem} \mid\left(\overline{\mathrm{P}} \cdot C_{0} ; \overline{\mathrm{V}}\right)
\end{gathered}
$$

Exercise CCS 1.2 Encode $P ; Q$ in CCS.

Value passing

$$
P_{1}+a(x) \cdot P\left|\bar{a}\langle v\rangle \cdot Q+Q_{1} \rightarrow P[x \leftarrow v]\right| Q
$$

A memory cell :

$$
\operatorname{Reg}\langle x\rangle=\overline{\operatorname{Get}}\langle x\rangle \cdot \operatorname{Reg}\langle x\rangle+\operatorname{Put}(y) \cdot \operatorname{Reg}\langle y\rangle
$$

One-shot : $\left\{\begin{array}{l}\operatorname{Sem}\langle x\rangle=(\overline{\operatorname{Get}}\langle x\rangle \cdot K)+K \\ K=\operatorname{Put}(y) \cdot \operatorname{Sem}\langle y\rangle\end{array}\right.$
(cf. Concurrency 2)

Bisimulation on a LTS (1/4)

A simulation is a relation \mathcal{R} such that for all P, Q, if $P \mathcal{R} Q$ then

$$
\forall \mu, P^{\prime}\left(P \xrightarrow{\mu} P^{\prime} \Rightarrow \exists Q^{\prime} Q \xrightarrow{\mu} Q^{\prime} \text { and } P^{\prime} \mathcal{R} Q^{\prime}\right)
$$

Bisimulation on a LTS (2/4)

A bisimulation is a relation \mathcal{R} such that \mathcal{R} and \mathcal{R}^{-1} are simulations. P, Q are bisimilar (notation $P \sim Q$) if there exists a bisimulation \mathcal{R} such that $P \mathcal{R} Q$.
$\left(\mathcal{R}^{-1}=\{(Q, P) \mid P \mathcal{R} Q\}\right)$

Bisimulation on a LTS (3/4)

If \mathcal{R}, \mathcal{S} are bisimulations, then so is their composition

$$
R S=\{(P, R) \mid \exists Q P \mathcal{R} Q \text { and } Q \mathcal{S} R\}
$$

In particular, $\sim \sim \subseteq \sim$, i.e., bisimilarity is transitive.

Bisimulation on a LTS (4/4)

Two processes that simulate one another, yet are not bisimilar :

$$
\begin{array}{ll}
P_{1}=a \cdot P_{2}+a \cdot P_{4} & Q_{1}=a \cdot Q_{2} \\
P_{2}=b \cdot P_{3} & Q_{2}=b \cdot Q_{3}
\end{array}
$$

$$
P_{1} \mathcal{T} Q_{1} \quad P_{4} \mathcal{T} Q_{2} \quad P_{2} \mathcal{T} Q_{2} \quad P_{3} \mathcal{T} Q_{3}
$$

$$
Q_{1} \mathcal{S} P_{1} \quad Q_{2} \mathcal{S} P_{2} \quad Q_{3} \mathcal{S} P_{3}
$$

but for all simulation \mathcal{R} containing $\left(P_{1}, Q_{1}\right)$ we have :
$P_{1} \mathcal{R} Q_{1}$ and $P_{1} \xrightarrow{a} P_{4} \Rightarrow P_{4} \mathcal{R} Q_{2}$

Induction and coinduction (1/4)

A function $f: D \rightarrow E$, where D, E are partial orders, is monotonous if

$$
\forall x, y \quad x \leq y \Rightarrow f(x) \leq f(y)
$$

Given (monotonous) $f: D \rightarrow D$, a prefixpoint (resp. a postfixpoint, a fixpoint) of f is a point x such that $f(x) \leq x$ (resp. $x \leq f(x), x=f(x)$).

Induction and coinduction (2/4)

Any monotonous function $G: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ has a least prefixpoint, which is moreover a fixpoint, and a greatest postfixpoint, which is moreover a fixpoint. They are respectively :

$$
\begin{aligned}
& \operatorname{Ifp}(G)=\bigcap\{X \mid G(X) \subseteq X\} \\
& \operatorname{gfp}(G)=\bigcup\{X \mid X \subseteq G(X)\}
\end{aligned}
$$

Induction and coinduction (3/4)

Induction principle : To show $\operatorname{lfp}(\mu) \subseteq R$ is is enough to show $\mu(R) \subseteq R$.
In practice, the induction principle is often used for a subset of $\operatorname{Ifp}(\mu)$, and then serves to show that $R=\operatorname{Ifp}(\mu)$.

Induction and coinduction (4/4)

Coinduction principle : To show $R \subseteq \operatorname{gfp}(\mu)$ it is enough to show $R \subseteq \mu(R)$.

In practice, the principle of coinduction is used to show that some element x is in $\operatorname{gfp}(\mu)$, and for this it is enough to find a postfixpoint R such that $x \in R$.

Operators defined by rules (1/4)

Monotonous operators G_{K} on $\mathcal{P}(X)$ defined via a set K of rules, each of the form (Y, x), with $Y \subseteq X$ and $x \in X$, or, graphically (for $Y=\left\{x_{1}, \ldots, x_{n}\right\}$ finite) :

$$
\frac{\left\{x_{1}, \ldots, x_{n}\right\}}{x}
$$

Set $G_{K}(R)=\{x \in X \mid \exists(Y, x) \in K Y \subseteq R\}$.

Operators defined by rules (2/4)

Prefixpoints of $G_{K}=$
subsets R closed forwards by the rules:

$$
\forall(Y, x) \in K \quad(Y \subseteq R \Rightarrow x \in R)
$$

Postfixpoints of $G_{K}=$ subsets R closed backwards by the rules:

$$
\forall x \in R \exists(Y, x) \in K \quad Y \subseteq R
$$

Operators defined by rules (3/4)

Bisimulation is defined by a set of rules : take K to be the set of all

$$
\frac{\left\{\left(P^{\prime}, f\left(\mu, P^{\prime}\right)\right) \mid P \xrightarrow{\mu} P^{\prime}\right\} \cup\left\{\left(g\left(\mu, Q^{\prime}\right), Q^{\prime}\right) \mid Q \xrightarrow{\mu} Q^{\prime}\right\}}{(P, Q)}
$$

where f is any function mapping each pair μ, P^{\prime} such that $P \xrightarrow{\mu} P^{\prime}$ to a process $f\left(\mu, P^{\prime}\right)$ such that $Q \xrightarrow{\mu} f\left(\mu, P^{\prime}\right)$ (resp. $g \ldots$. .

Operators defined by rules (4/4)

What do we gain by knowing that \sim, first defined as the union of all bisimulations, is actually the largest fixpoint of some operator?

First, that \sim itself is a bisimulation, second that it is a prefixpoint, not only a post-fixpoint.

Continuity (1/3)

$G: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ is continuous if it preserves \bigcup of increasing chains, i.e. $G\left(\bigcup_{n \in \omega} X_{n}\right)=\bigcup_{n \in \omega} G\left(X_{n}\right) . G$ is called anti-continuous if it preserves \bigcap of decreasing chains.

$$
\begin{aligned}
G \text { continuous } & \Rightarrow \operatorname{Ifp}(G)=\bigcup_{n \in \omega} G^{n}(\emptyset) \\
G \text { anti-continuous } & \Rightarrow g f p(G)=\bigcap_{n \in \omega} G^{n}(X)
\end{aligned}
$$

Continuity (2/3)

If all the Y^{\prime} 's in the rules of K are finite, then G_{K} is continuous. If, for all $x,\left\{(Y \mid(Y, x) \in K\}\right.$ is finite, then G_{K} is anti-continuous.

In CCS with finite sums, the bisimulation operator G_{K} is both continuous and anti-continuous.

Continuity (3/3)

Consider the following K :

$$
\overline{\text { nil }} \quad \frac{l}{\operatorname{cons}(a, l)}
$$

The Ifp of G_{K} is the set of lists. The $g f p$ of G_{K} is the set of finite and infinite lists.

Exercise CCS1.2 : How to obtain infinite lists?

