
Languages and Systems

for Global Computing

MPRI, 4/1/2006

1

Goals

• global computing can be used to access and synchronize

large data, to access large computing resources, to

customize groupware environments.

• global computing ⇒ scalability and decentralized systems.

• global computing is a very (too?) ambitious project

• basic theory: concurrent and localized objects, extendible

languages and systems, security, etc

• engineering: compiling for several run-times, inter-pointer

analysis, distributed garbage collection, etc

• reality and vaporware: Java, .Net, peer-to-peer, etc

Already existing

• agents in AI

• distributed systems

• theory of concurrency: CSP, CCS, π-calculus

2

.

Concurrency theory

• concurrent programs are always difficult to understand

• concurrency theory (1978 → 1992) is an elegant theory,

mainly interested by non-distributed systems

• distributed systems are asynchronous

(no output guards, no broadcasts)

• routing is important in distributed systems

• failure detection has to be handled

Concurrency, Locality and Mobility

• π-calculus is a calculus for reconfigurable (extendible)

communicating systems, named “mobile processes”.

• its variants make localization more explicit: distributed Join

calculus, distributed π-calculus, π1-calculus, etc

• the calculus of Mobile Ambients has all its synchronization

based on localization.

3

.

From π-calculus to Join calculus (1/3)

Suppose we have:

• one sender on location s communicates on channel x,

• several receivers on locations a and b wait for data on

channel x,

Then which routing strategy?

• sending one of them, but fairness?

• sending both ⇒ distributed consensus between sender s and

receivers a and b.

• protocol for atomic broadcast?

⇒ receivers are uniquely located (per channel name)

≡ point-to-point one-way communications from senders to

channel managers

4

From π-calculus to Join calculus (2/3)

Extra problems

• if x-channel manager dies, where to send a message for x ?

⇒ channel managers are always alive ≡ permanent receivers

• in CCS/π-calculus, synchronization acheived by consumption

of receivers, E.g. a lock is a channel without receiver during

the critical section.

• permanent receivers ⇒ synchronization acheived by waiting

for several messages on several channels.

⇒ receivers are guards joining several messages

(as for Petri nets)

5

From π-calculus to Join calculus (3/3)

Caveat

• remote procedure calls are nearly transparent [B. Nelson]

• RPCs → big success for programming

• remote synchronization should also be quasi transparent

[Magic Cap]

• ⇒ local and remote communication follow the same

schemes.

6

.

The Join-Calculus Language, release 1.05

See [Fournet, Gonthier, Maranget]

ML style (1/2)

let x = 1 ;; Type inference
val x: int

let y = x+1 ;;

val y: int

do print(x); print(y) Synchronous expr.
12

let id(x) = reply x ;; Polymorphism
val id: 〈α〉 → 〈α〉
do print(id(1)); print_string (id("hello"))

1hello

let succ(x) = reply x+1 ;;

val succ: 〈int〉 → 〈int〉
let s = id (succ) ;;

val s: 〈int〉 → 〈int〉
spawn echo(1) Asynchronous expr.
let e = id (echo)

val e: 〈int〉

7

.

ML style (2/2)

let f(x,y) = reply x+y, x-y ;; Tuples

val f: 〈int× int〉 → 〈int× int〉

let fib(n) = Recursive let
if x <= 1 then { reply 1 }

else { reply fib (n-1) + fib (n-2)}

val fib: 〈int〉 → 〈int〉

let twice (f) = High-order
let r(x) = reply f(f(x)) in
reply r

val twice: 〈〈α〉 → 〈α〉〉 → 〈〈α〉 → 〈α〉〉

8

Concurrency

spawn echo (1) | echo (2) Non determinism

let fruit (f) | cake (c) = Synchronization
{print_string(f ^ "_" ^ c ^ "\n");}

val fruit: 〈string〉
val cake: 〈string〉

spawn fruit ("apple") | fruit ("blueberry") |

cake ("pie") | cake ("crumble")

apple pie

blueberry crumble or

blueberry pie

apple crumble or ...

9

Local definitions

let count(n) | inc() = count(n+1) | reply to inc

and count(n) | get() = count(n) | reply n to get

val count: 〈int〉
val inc: 〈 〉 → 〈 〉
val get: 〈 〉 → 〈int〉

let new_counter () = Scope extrusion
let count(n) | inc() = count(n+1) | reply to inc

and count(n) | get() = count(n) | reply n to get

in count (0) | reply inc,get

val new counter: 〈 〉 → 〈〈 〉 → 〈 〉 ∗ 〈 〉 → 〈〈int〉〉〉

10

.

Locks
let new_lock () =

let free() | lock() = reply to lock

and unlock() = free() | reply to unlock in
free() | reply lock, unlock

val new lock: 〈 〉 → 〈〈 〉 → 〈 〉 × 〈 〉 → 〈 〉〉
spawn ... lock(); ... ; unlock(); ...

Barriers
let join1 () | join2 () = reply to join1

| reply to join2

spawn ... join1 (); player1 (); ...

| ... join2 (); player2 (); ...

11

.

Full-duplex channels

let new_channel () = Asynchronous ch.

let send(x) | receive() = reply x to receive in

reply send, receive

val new channel: 〈 〉 → 〈〈α〉 × 〈 〉 → 〈α〉〉

let new_schannel () = Synchronous ch.

let send(x) | receive() = reply x to receive

| reply to send in

reply send, receive

val new schannel: 〈 〉 → 〈〈α〉 → 〈 〉 × 〈 〉 → 〈α〉〉

12

Distribution

let new_cell_d () = Cell server
let get() | some(x) = none() | reply x to get

and put(x) | none() = some(x) | reply to put in
none() | reply get, put

do ns.register ("cell_d", new_cell_d)

let new_cell_d = ns.lookup ("cell_d") ;; Cell client

let read, write = new_cell_d() do (

write ("world");

write ("hello," ^ read());

print_string (read());

print_newline()

) ;;

Checking types in name service ? ↔ typed marshalling ?

13

Distribution and mobility (1/2)
let new_cell_m (a) = Cell server
loc applet

with get() | some(x) = none() | reply x to get

and put(x) | none() = some(x) | reply to put in
init go(a); none()

end in
reply get, put

do ns.register ("cell_m", new_cell_m)

let new_cell_m = ns.lookup ("cell") Cell client

loc user

init

let read, write = new_cell_m(user) in {

write ("world");

write ("hello," ^ read());

print_string (read());

print_newline();

}

end

, applet, user are locations. Subjective moves.

14

.

Distribution and mobility (2/2)
let new_cell_mlog (a) = Cell server

let log (s) = print_string ("cell" ^ s ^ "\n"); reply to log in
loc applet

with get() | some(x) = log ("is empty");

none() | reply x to get

and put(x) | none() = log ("contains" ^ x);

some(x) | reply to put in
init go(a); none()

end in
reply get, put

do ns.register ("cell", new_cell)

let new_cell_mlog = ns.lookup ("cell") ;; Cell client

loc user

init

let read, write = new_cell_mlog(user) in {

write ("world");

write ("hello," ^ read());

print_string (read());

}

end

log keeps on server side.

15

.

The join-calculus

P, Q ::= processes

| x〈ṽ〉 sending ṽ on x

| defD in P (rec) definition of D in P

| P | Q parallel composition

| 0 empty process

D, E ::= definitions

| J ⊲ P elementary clause

| D ∧ E simultaneous definitions

| T empty definition

J, J ′ ::= join-patterns

| x〈ṽ〉 receiving ṽ on x

| J | J ′ composed patterns

x, v1, v2, . . . defined and receiving variables

Defined variables are bound in defD in P

Receiving variables are bound in J ⊲ P

16

Free and bound variables

defined var

(T) = ∅

(D ∧ D′) = dv(D)∪dv(D′)

(J ⊲ P) = dv(J)

(J |J ′) = dv(J)∪dv(J ′)

(x〈ṽ〉) = {x}

(a[D : P]) = {a} ⊎ dv(D)

receiving var

(J |J ′) = rv(J)⊎ rv(J ′)

(x〈ṽ〉) = {u ∈ ṽ}

free var

fv(0) = ∅ Processes

fv(P |P ′) = fv(P)∪ fv(P ′)

fv(x〈v〉) = {x} ∪ {u ∈ ṽ}

fv(defD in P) = (fv(P)∪ fv(D)) − dv(D)

fv(a[D : P]) = {a} ∪ fv(D)∪ fv(P)

fv(go〈a, κ〉) = {a, κ}

fv(T) = ∅ Defs

fv(D ∧ D′) = fv(D)∪ fv(D′)

fv(J ⊲ P) = dv(J)∪(fv(P)− rv(J))

17

Structural equivalence and calculus (1/2)

Monoidal rules

P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

P | 0 ≡ P

D ∧ D′ ≡ D′ ∧ D

(D ∧ D′) ∧ D′′ ≡ D ∧ (D′ ∧ D′′)

D ∧T ≡ D

Binding rules

P | defD in Q ≡ defD in P | Q fv(P)∩dv(D) = ∅

defD in defD′ in P ≡ defD ∧ D′ in P similar

defT in P ≡ P

18

.

Structural equivalence and calculus (2/2)

Mononoty

P =α Q =⇒ P ≡ Q

P ≡ Q =⇒ P | R ≡ Q | R

P ≡ Q =⇒ J ⊲ P ≡ J ⊲ Q

D ≡ D′, P ≡ Q =⇒ defD in P ≡ defD′ in Q

Reduction rules

defD ∧ J ⊲ P in Jσ | Q → defD ∧ J ⊲ P in Pσ | Q

P ≡ R → S ≡ Q =⇒ P → Q

19

.

Join-Calculus wrt other calculi (1/2)

wrt the π-calculus [Milner, Parrow, Walker]

• one-way channels

• fixed static set of receptors per channel

• permanent definitions

• JC is a subset of the π-calculus easily implementable in a

standard distributed environment (Unix/WinXXX). No need

for distributed-consensus protocols (Isis-like).

• Simple failures. Channel and receptors fail at same time

(permanent failure model)

20

Join-Calculus wrt other calculi (2/2)

wrt Ambients [Cardelli, Gordon]

• lexically scoped

• communication and migration are orthogonal

• JC = communication, Ambients = administration

• Ambients good for security

wrt π1-calculus [Amadio]

• pi-one relies on a condition on types

• JC based on its syntax

• quasi identical

21

Join-Calculus with locations

D, E ::= . . . | a[D : P]

is a location

Caution: scopes and linearity

• the scope of a in a[D : P] delimited by the enclosing def statement

• a location only defined once, e.g. the following definition is

illegal

def a[D : P] ∧ a[E : Q] ⊲ R in S

• a defined name appears in the join-patterns of a unique location,

e.g. the following definition is illegal

def a[x〈u〉 ⊲ P : Q] ∧ b[x〈v〉 ⊲ R : S] in T

.

Join-Calculus with migrations

P, Q ::== . . . | go〈a, κ〉

current location becomes a sublocation of a, then send a trigger

on channel κ

Remarks: hierarchy

- a location moves with its sublocations

- if a goes to b, then b must not be a sublocation of a. Syntactic

check at compile time (move lock freeness).

23

.

Join-Calculus and Failures

• permanent failures

• a location fails with its sublocations

• emission or moves from dead sites are impossible

• sending to or moves to dead sites are possible

• failure detection impossible in an asynchronous world

[Fisher, Lynch, Paterson], [Chandra, Toueg]

• a trace-semantics equivalent implementation is feasible

• positive information about failures in practice.

• only suicides presently implemented (next version with

asynchronous failures ?)

• failures of channels 6= failures of sites

Failures are a big and large problem ↔ Distributed algorithms?

↔ distributed operating systems ?

Failures should be part of semantics of languages.

Jocaml (1/3)

Interface with the outside world

let agent = ref 0 ;;

let def register_me (loc, name, (args:string list)) =

reply () |

let name = incr agent; Printf.sprintf

"%s %d" (match args with [name] -> name | _ -> "Agent") !agent in
let name =

match args with
| s :: l -> s

| [] -> name in
let name = if String.length(name) > 8 then String.sub name 0 8

else name in
let job, kill = make comp (loc) in
next (name, job, kill) ;;

let _ =

Ns.register !ns_name register_me (vartype:

(Join.location * string * string list -> unit) metatype);

Join.server () ;;

;;

25

Jocaml (2/3)
let _ =

spawn { counter 0 };

for i = ww - 1 downto 0 do
for j = hh - 1 downto 0 do
spawn { s(i*w,j*w) }

done

done ;;

let def make_comp (there) =

let loc mandel [Quad;Calc]

def square (i0,j0,w,h) =

let r = Quad.empty w h limit in
for i = 0 to w - 1 do
for j = 0 to h - 1 do
...

Quad.set r i j m

done

done;

reply r to square

and kill! () = Join.kill Join.here;

do { Join.go there } in
reply (square, kill)

26

.

Jocaml (3/3)
let ww = 6 and hh = 6 and let w = size_x () / ww and h = size_y () / hh

let def s!(n,m) | next!(name,job,kill) =

let w = min w (sx-n) and h = min h (sy-m) in
print_name (n,m,w,h,name,black) ;

let def finished r | mutex! () =

draw_square (name,n,m,w,h,r); job_done ();

next(name,job,kill) | reply

or restart () | mutex! () = s(n,m) | reply

in
mutex () |

loc boss do {

{ Join.fail job; restart (); Join.halt (); } |

{ Thread.delay 15.0; restart (); Join.halt (); } |

let r = job (n/pixel,m/pixel,w/pixel,h/pixel) in
print_string "job done"; print_newline ();

finished r;

Join.halt ();

}

or killAll! () | next! (name,job,kill) = killAll() | kill()

and counter! n | job_done () =

{ if ww*hh = n+1 then killAll () else counter (n+1) } | reply ()

Then go!

.

Join Research (1/2)

• semantics of equivalence [Fournet, Gonthier]

• labeled transition systems (open JC) [Boreale, Fournet, Laneve]

• semantics of security [Abadi, Fournet, Gonthier]

• types and interference [Conchon, Pottier]

• dynamic ressources [Schmitt]

• implementation JC 1.05 [Fournet, Maranget]

• implementation Jocaml [Fournet, le Fessant, Schmitt]

• compiling join patterns [le Fessant, Maranget]

• distributed runtime (GC) [Fournet, le Fessant]

• control of communication and migration, the M-calculus

[Schmitt, Stefani]

• coding of pi-calculus and Ambients [Fournet, Lévy, Schmitt]

• distributed objects [Fournet, Laneve, Maranget, Qin, Rémy]

28

Join Research (2/2)

• functional nets [Odersky]

• typed marshalling [Leifer, Peskine, Sewell, Wansbrough]

• Petri nets and JC [Bruni, Montanari, Sassone]

• Distributed patterns [Bruni, Montanari]

• Symmetric run-times (P2P) To be done! . . . ML-Donkey [le Fessant]

see http://join.inria.fr

29

Conclusion and Future work

• usefulness of mobility

Missing the Global Computing Fibonacci

– worldwide computing

– customization of groupware applications

– extendible systems, hot restart

– distributed games

• in Jocaml: games, mobile editor, hevea

• reconsidering compilation problems

• locality and interference analysis

• connection with security

• correct handling of failures

• mastering Jocaml releases

30

