

PLC

－theory of sequential algorithms \rightarrow game semantics
－missed jury of his PhD＋ 3 papers together
－λ－calculus＋category theory
\rightarrow book with Roberto Amadio $\star \star \star$
－neighbors in Paris（PL in 15th－－JJ in 7th）
－Sophia－Antipolis in 70－80＇s

Plan

小菜一碟

－the standardization theorem（with upper bounds）
－our result
－rigid and minimum prefixes（stability thm）
－Xi＇s proof（with upper bounds）
－Xi＇s proof revisited with live occurences
joint work with Andrea Asperti（LICS 2013）．．

Standard reductions (1/3)

- Definition: The following reduction is standard

$$
\rho: M=M_{0} \xrightarrow{R_{1}} M_{1} \xrightarrow{R_{2}} M_{2} \cdots \xrightarrow{R_{n}} M_{n}=N
$$

iff for all i and $j, i<j$, then R_{j} is not residual along ρ of some R_{j}^{\prime} to the left of R_{i} in M_{i-1}.

- Definition: The leftmost-outermost reduction is also called the normal reduction.

Standard reductions (2/3)

Standard reductions (3/3)

- Standardization thm [Curry 50] Let $M \xrightarrow{\star} N$. Then $M \xrightarrow[\text { st }]{\stackrel{\star}{\longrightarrow}} N$.

Any reduction can be performed outside-in and left-to-right.

- Normalization corollary

Let $M \stackrel{\star}{\Perp} n f$. Then $M \stackrel{\text { norm }}{\stackrel{\star}{\leftrightarrows}} n f$.

Our result

- Upper-bound on standard reductions [Hongwey Xi, 99]

Let $\ell=|\rho|$ and $\rho: M \xrightarrow{\star} N$. Then $\left|\rho_{s t}\right| \leq|M|^{2^{\ell}}$
where $\rho_{s t}: M \underset{\text { st }}{\star} N$.

- Upper-bound to normal forms [Asperti-JJL, 13]

Let $\ell=|\rho|$ and $\rho: M \xrightarrow{\star} x$. Then $\left|\rho_{\text {norm }}\right| \leq \ell$!
where $\rho_{\text {norm }}: M \underset{\text { norm }}{\star} x$.

Stability (1/2)

- Definition [rigid prefix] A prefix of M is rigid when never the left of an application in A can reduce to an abstraction.

$$
\begin{array}{rr}
& M=\Omega(\lambda x \cdot x(I x))(I I x) \\
-\left(\lambda x \cdot x_{-}\right)-\text {rigid prefix of } M & \Omega=(\lambda x \cdot x x)(\lambda x \cdot x x) \\
-\left(\lambda x \cdot x_{-}\right)(-I x) \text { not rigid prefix of } M & I=\lambda x \cdot x
\end{array}
$$

(rigid prefixes are finite prefixes of Berarducci trees)

- Definition M produces A if $M \stackrel{\star}{\longrightarrow} N$ and A is rigid prefix of N.

We gain one exponential.

Stability (2/2)

- Theorem [stability] For any rigid prefix A produced by M, there is a unique minimal prefix $\lfloor M\rfloor_{A}$ of M producing A.

- Fact [monotony] Let M produce A rigid and $M \xrightarrow{\star} N$. Then N produces A.

Slow consumption (1/2)

- Lemma 1 [slow consumption] Let M produce A rigid and $M \rightarrow N$. Then $\left|\lfloor N\rfloor_{A}\right| \geq\left|\lfloor M\rfloor_{A}\right|-2$.
i.e. $\left.\quad\left|\lfloor M\rfloor_{A}\right|_{\varrho} \leq 1+\| N\right\rfloor\left._{A}\right|_{\complement}$
where $|P|_{@}$ is the applicative size of P (its number of application nodes).
- Corollary Let $\rho: M \xrightarrow{\star} N$ and A be rigid prefix of N. Then $\left|\lfloor M\rfloor_{A}\right|_{\odot} \leq|\rho|+|A|_{\odot}$.

Slow consumption (2/2)

Multiplicity of variables

- Definition Let M produce A rigid. An occurrence of x is live for A if it belongs to $\lfloor M\rfloor_{A}$.

Let $m_{A}(x)$ be the number of live occurrences of x in M. We pose $m_{A}(R)=m_{A}(x)$ when $R=(\lambda x . M) N$.

- Lemma 2 [upper bound on live multiplicity] Let $\rho: M \xrightarrow{\star} N$ and A rigid prefix of N. Then $m_{A}(x) \leq|\rho|+|A| \odot+1$ for any variable x in M.

Xi's proof of standardization (1/3)

- Lemma [reordering of head redexes] H is residual of H^{\prime}. Then

with $\left|\rho^{\prime}\right| \leq\lceil 1, m(H)\rceil .|\rho|$

Proof Easy since $M=\lambda \vec{x} .(\lambda x . T) U \vec{M}$ and $\rho=\rho_{T} \rho_{U} \rho_{1} \cdots \rho_{n}$.
And ρ^{\prime} is disjoint intermix of ρ_{T}, several ρ_{U}, followed by ρ_{i} 's.
Thus $\left|\rho^{\prime}\right|=\left|\rho_{T}\right|+m(H) .\left|\rho_{U}\right|+\sum_{i}\left|\rho_{i}\right|$

Xi's proof of standardization (2/3)

- Corollary

with $\left|\rho^{\prime}\right| \leq 1+\lceil 1, m(R)\rceil \cdot|\rho|$

Proof

By induction on pair $(|\rho|,|M|)$. Cases on ρR contracting head redex or not + previous lemma.

Xi's proof of standardization (3/3)

- Theorem [standardization with upper bounds]

Let $M=M_{0} \xrightarrow{R_{1}} M_{1} \xrightarrow{R_{2}} M_{2} \cdots \xrightarrow{R_{n}} M_{n}=N$
Then there is ρ standard from M to N such that $|\rho| \leq\left(1+\left\lceil 1, m\left(R_{2}\right)\right\rceil\right)\left(1+\left\lceil 1, m\left(R_{3}\right)\right\rceil\right) \cdots\left(1+\left\lceil 1, m\left(R_{n}\right)\right\rceil\right)$

Proof By induction on the length n of reduction from M to N.

Proof of our upper bound (1/2)

- Theorem [standardization with upper bounds] Let $M=M_{0} \xrightarrow{R_{1}} M_{1} \xrightarrow{R_{2}} M_{2} \cdots \xrightarrow{R_{n}} M_{n}=N$ and A be rigid prefix of N.
Then there is ρ standard from M to N^{\prime} such that $|\rho| \leq\left(1+\left\lceil 1, m_{A}\left(R_{2}\right)\right\rceil\right)\left(1+\left\lceil 1, m_{A}\left(R_{3}\right)\right\rceil\right) \cdots\left(1+\left\lceil 1, m_{A}\left(R_{n}\right)\right\rceil\right)$ and A is rigid prefix of N^{\prime}.

Proof of our upper bound (2/2)

- Corollary 1 Let $\rho: M \xrightarrow{\star} N$ and A be rigid prefix of N. Then there is $\rho_{\text {st }}$ standard producing A such that:

$$
\left|\rho_{s t}\right| \leq \frac{\left(|\rho|+|A|_{\complement}\right)!}{\left(1+|A|_{\odot}\right)!}
$$

Proof Simple calculation with lemma 2 and previous thm.

- Corollary 2 Let $\rho_{s t}: M \xrightarrow{*} x$ be standard reduction.

Then $\left|\rho_{s t}\right| \leq|\rho|$! where ρ is shortest reduction from M to x.

Conclusion

- terms are easy to grow in the λ-calculus
- but take time to consume terms
- need for sharing !!
- back to earth

