

PLC

- theory of sequential algorithms —— game semantics
- missed jury of his PhD + 3 papers together
- λ-calculus + category theory
- book with Roberto Amadio ★ ★ ★
- neighbors in Paris (PL in 15th -- JJ in 7th)
- Sophia-Antipolis in 70-80's

Plan

小菜一碟

- the standardization theorem (with upper bounds)
- our result
- rigid and minimum prefixes (stability thm)
- Xi's proof (with upper bounds)
- Xi's proof revisited with live occurences

.. joint work with Andrea Asperti (LICS 2013) ..

Standard reductions (1/3)

• Definition: The following reduction is standard

$$\rho: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

iff for all i and j, i < j, then R_j is not residual along ρ of some R'_i to the left of R_i in M_{i-1} .

 Definition: The leftmost-outermost reduction is also called the normal reduction.

Standard reductions (2/3)

Standard reductions (3/3)

• Standardization thm [Curry 50] Let $M \stackrel{*}{\longrightarrow} N$. Then $M \stackrel{*}{\Longrightarrow} N$.

Any reduction can be performed outside-in and left-to-right.

• Normalization corollary
Let $M \xrightarrow{*} nf$. Then $M \xrightarrow{*} nf$.

7

8

Our result

• Upper-bound on standard reductions [Hongwey Xi, 99]

Let $\ell = |\rho|$ and $\rho : M \xrightarrow{*} N$. Then $|\rho_{st}| \leq |M|^{2^{\ell}}$ where $\rho_{st} : M \xrightarrow{*} N$.

• Upper-bound to normal forms [Asperti-JJL, 13]

Let $\ell = |\rho|$ and $\rho : M \xrightarrow{*} x$. Then $|\rho_{norm}| \leq \ell!$ where $\rho_{norm} : M \xrightarrow{*} x$.

We gain one exponential.

Stability (1/2)

• **Definition** [rigid prefix] A prefix of M is rigid when never the left of an application in A can reduce to an abstraction.

$$M = \Omega(\lambda x.x(Ix))(IIx)$$

$$_(\lambda x.x_)_ \text{ rigid prefix of } M$$

$$\Omega = (\lambda x.xx)(\lambda x.xx)$$

$$_(\lambda x.x_)(_Ix) \text{ not rigid prefix of } M$$

$$I = \lambda x.x$$

(rigid prefixes are finite prefixes of Berarducci trees)

• **Definition** M produces A if $M \stackrel{*}{\longrightarrow} N$ and A is rigid prefix of N.

Stability (2/2)

• Theorem [stability] For any rigid prefix A produced by M, there is a unique minimal prefix $|M|_A$ of M producing A.

• Fact [monotony] Let M produce A rigid and $M \xrightarrow{*} N$. Then N produces A. П

Slow consumption (1/2)

• Lemma 1 [slow consumption] Let M produce A rigid and $M \longrightarrow N$. Then $||N|_A| \ge ||M|_A| - 2$.

i.e. $||M|_A|_0 \le 1 + ||N|_A|_0$ where $|P|_0$ is the applicative size of P (its number of application nodes).

• Corollary Let $\rho: M \xrightarrow{*} N$ and A be rigid prefix of N. Then $|\lfloor M \rfloor_A|_{@} \leq |\rho| + |A|_{@}$.

13

14

Multiplicity of variables

• **Definition** Let M produce A rigid. An occurrence of x is live for A if it belongs to $\lfloor M \rfloor_A$.

Let $m_A(x)$ be the number of live occurrences of x in M. We pose $m_A(R) = m_A(x)$ when $R = (\lambda x.M)N$.

• Lemma 2 [upper bound on live multiplicity] Let $\rho: M \xrightarrow{*} N$ and A rigid prefix of N. Then $m_A(x) \leq |\rho| + |A|_{@} + 1$ for any variable x in M.

Slow consumption (2/2)

15

Xi's proof of standardization (1/3)

• Lemma [reordering of head redexes] H is residual of H'.

Then

with $|\rho'| \leq \lceil 1, m(H) \rceil . |\rho|$

Proof Easy since $M = \lambda \vec{x}.(\lambda x.T)U\vec{M}$ and $\rho = \rho_T \rho_U \rho_1 \cdots \rho_n$. And ρ' is disjoint intermix of ρ_T , several ρ_U , followed by ρ_i 's. Thus $|\rho'| = |\rho_T| + m(H).|\rho_U| + \sum_i |\rho_i|$

17

Xi's proof of standardization (2/3)

Corollary

with $|\rho'| \leq 1 + \lceil 1, m(R) \rceil . |\rho|$

Proof

By induction on pair $(|\rho|, |M|)$. Cases on ρR contracting head redex or not + previous lemma.

Xi's proof of standardization (3/3)

• Theorem [standardization with upper bounds] Let $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ Then there is ρ standard from M to N such that $|\rho| \leq (1 + \lceil 1, m(R_2) \rceil)(1 + \lceil 1, m(R_3) \rceil) \cdots (1 + \lceil 1, m(R_n) \rceil)$

Proof By induction on the length n of reduction from M to N.

19

Proof of our upper bound (1/2)

• Theorem [standardization with upper bounds] Let $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ and A be rigid prefix of N.

Then there is ρ standard from M to N' such that $|\rho| \leq (1 + \lceil 1, m_A(R_2) \rceil)(1 + \lceil 1, m_A(R_3) \rceil) \cdots (1 + \lceil 1, m_A(R_n) \rceil)$ and A is rigid prefix of N'.

Proof of our upper bound (2/2)

• Corollary 1 Let $\rho: M \xrightarrow{*} N$ and A be rigid prefix of N. Then there is ρ_{st} standard producing A such that:

$$|
ho_{st}| \leq rac{\left(|
ho| + |A|_{ ext{@}}
ight)!}{\left(1 + |A|_{ ext{@}}
ight)!}$$

Proof Simple calculation with lemma 2 and previous thm.

• Corollary 2 Let $\rho_{st}: M \xrightarrow{*} x$ be standard reduction. Then $|\rho_{st}| \leq |\rho|!$ where ρ is shortest reduction from M to x.

21

Conclusion

- ullet terms are easy to grow in the λ -calculus
- but take time to consume terms
- need for sharing !!
- back to earth

