Strongly Connected Components in graphs, formal proof of Tarjan1972 algorithm

jean-jacques.levy@inria.fr
Inria Sophia, 15-03-2017

Plan

- motivation
- algorithm
- pre-/post-conditions
- imperative programs
- conclusion
.. joint work (in progress) with Ran Chen

Motivation

- nice algorithms should have simple formal proofs
- to be fully published in articles or journals
- how to publish formal proofs ?
- Coq proofs seem to me unreadable (by normal human)
- Why3 allows mix of automatic and interactive proofs
- first-order logic is easy to understand
- algorithms on graphs = a good testbed

A one-pass lineartime algorithm

The algorithm (1/3)

- depth-first search algorithm
- with pushing non visited vertices into a working stack
- and computing oldest vertex reachable by at most a single « back-edge »
- when that oldest vertex is equal to currently visited vertex, a new strongly connected component is in the working stack on top of current vertex.
- then pop working stack until currently visited vertex

The algorithm (2/3)

les valeurs successives de la pile

The algorithm (2/3)

The algorithm (2/3)

The algorithm (2/3)

les valeurs successives de la pile

The algorithm (3/3)

- print each component on a line

```
let rec printSCC (x: int) (s: Stack.t)
    (num: array int) (serialnb: ref int) =
    Stack.push x s;
    serialnb := !serialnb + 1;
    num[x] \leftarrow !serialnb;
    let min = ref num[x] in
    foreach y in (successors x) do
    let m = if num[y] = 0
        then printSCC y s num serialnb
        else num[y] in
    min := Math.min m !min
    done;
```

```
if !min \(=\) num [x] then begin
    repeat
    let \(\mathrm{y}=\) Stack. pop s in
    Printf.printf "\%d " y;
    num [y] \(\leftarrow\) max_int;
    if \(\mathrm{y}=\mathrm{x}\) then break;
    done;
    Printf.printf "\n";
    min := max_int;
end;
return ! min;
```


Proof in algorithms book (1/2)

- consider the spanning trees (forest)
- tree structure of strongly connected components
- 2-3 lemmas about ancestors in spanning trees

Lemma 10. Let v and w be vertices in G which lie in the same strongly connected component. Let F be a spanning forest of G generated by repeated depth-first search. Then v and w have a common ancestor in F. Further, if u is the highest numbered common ancestor of v and w, then u lies in the same strongly connected component as v and w.

$$
\begin{aligned}
\operatorname{LOWLINK}(x)=\min & (\{\text { num }[x]\} \quad \cup \text { num }[y] \mid x \xlongequal{*} \hookrightarrow y \\
& \wedge x \text { and } y \text { are in same } \\
& \text { connected component }\})
\end{aligned}
$$

Lemma 12. Let G be a directed graph with LOWLINK defined as above relative to some spanning forest F of G generated by depth-first search. Then v is the root of some strongly connected component of G if and only if LOWLINK $(v)=v$.

Proof in algorithms book (2/2)

- give the program
- proof
program
- that part of the proof is very informal

The algorithm (bis)

$\begin{aligned} \operatorname{LOWLINK}(x)=\min & (\{n u m[x]\} \cup\{\operatorname{num}[y] \mid x \xlongequal{*} \hookrightarrow y \\ & \wedge x \text { and } y \text { are in same } \\ & \text { connected component }\})\end{aligned}$

The algorithm (ter)

$$
\begin{aligned}
\operatorname{LOWLINK}(x)=\min & (\{\operatorname{rank}[y] \mid x \xlongequal{*} \hookrightarrow y \\
& \wedge x \text { and } y \text { are in same } \\
& \text { connected component }\})
\end{aligned}
$$

Our program (1/3)

- a functional version with lists and finite sets
- the working stack is a list

```
function rank ( \(x\) : vertex) (s: list vertex) : int =
    match s with
    | Nil \(\rightarrow\) max_int()
    | Cons \(y\) s' \(\rightarrow\) if \(\mathrm{x}=\mathrm{y}\) \&\& not (lmem \(\mathrm{x} \mathrm{s}^{\prime}\) ) then length \(\mathrm{s}^{\prime}\) else rank \(\mathrm{x} \mathrm{s}^{\prime}\)
    end
function max_int (): int = cardinal vertices
```


Our program (1/3)

- a functional version with lists and finite sets
- the working stack is a list

```
let rec split (x : \alpha) (s: list \alpha) : (list \alpha, list \alpha) =
returns{(s1, s2) }->\mathbf{s}1++\mathbf{s}2=s
returns{(s1, _) }->\mathrm{ lmem x s }->\mathrm{ is_last_of x s1}
    match s with
    | Nil }->\mathrm{ (Nil, Nil)
    | Cons y s' }->\mathrm{ if x = y then (Cons x Nil, s') else
        let (s1', s2) = split x s' in
            ((Cons y s1'), s2)
    end
```


Our program (2/3)

- blacks, grays are sets of vertices; sccs is a set of sets of vertices
- naming conventions:
x, y, z for vertices; b for black sets; s for stacks;
cc for connected components;
sccs for sets of connected components
let rec dfs1 x blacks (ghost grays) stack sccs =
let $m=$ rank x (Cons x stack) in
let (m1, b1, s1, sccs1) =
dfs' (successors x) blacks (add x grays) (Cons x stack) sccs in
if $m 1 \geq m$ then
let (s2, s3) = split x s1 in
(max_int(), add x b1, s3, add (elements s2) sccs1)
else
(m1, add x b1, s1, sccs1)

Our program (3/3)

```
with dfs' roots blacks (ghost grays) stack sccs =
    if is_empty roots then
    (max_int(), blacks, stack, sccs)
    else
    let x = choose roots in
    let roots' = remove x roots in
    let (m1, b1, s1, sccs1) =
        if lmem x stack then
            (rank x stack, blacks, stack, sccs)
        else if mem x blacks then
            (max_int(), blacks, stack, sccs)
        else
            dfs1 x blacks grays stack sccs in
    let (m2, b2, s2, sccs2) =
        dfs' roots' b1 grays s1 sccs1 in
    (min m1 m2, b2, s2, sccs2)
```


Pre-/Post-conditions

Dre/post-conditions $11 / 3)$

let rec dfs1 x blacks (ghost grays) stack sccs = requires \{mem x vertices $\}$ (* $R 1$ *)

```
requires{access_to grays x} (*R2 *)
```

requires $\{$ not mem x (union blacks grays) \} ($* R 3 *$)
(* monotony *)
returns $\left\{\left(_, b, s, \ldots\right) \rightarrow \exists s^{\prime} . s=s^{\prime}++\right.$ stack \wedge subset (elements s') b\} (* M1 *)

Pre/Post-conditions (2/3)

stack

$$
\begin{aligned}
\mathrm{m} & \leq \text { rank } \mathrm{y} \text { stack } \\
\mathrm{m} & \leq \text { rank } \mathrm{x} \text { stack }
\end{aligned}
$$

Pre/Post-conditions (3/3)

```
with dfs' roots blacks (ghost grays) stack sccs =
requires {subset roots vertices} (* R1 *)
requires {\forall\mathbf{x}. mem x roots }->\mathrm{ access_to grays x} (* R2 *)
```

(* post conditions *)
returns $\left\{\left(\right.\right.$ _ , b , _ , $^{\text {) }} \rightarrow$ subset roots (union b grays) \} (* E1 *)
returns $\left\{(m, \ldots, s,)^{\prime}\right) \rightarrow \forall x$. mem x roots $\rightarrow m \leq$ rank x s\} (* E2 *)
returns $\{(m, \ldots, s, \quad) \rightarrow m=\max$ int() $\vee \exists \mathrm{x}$. mem x roots \wedge rank_of_reachable $\mathrm{m} \times \mathrm{s}\}$
returns $\{(\mathrm{m}, ~, ~, ~ s, ~,) \rightarrow \forall y$. crossedgeto s y stack $\rightarrow \mathrm{m} \leq$ rank y stack\} (* E4 *)
(* monotony *)

returns $\left\{\left(\right.\right.$ _ , b $^{\prime}$, _ $\left.^{2}\right) \rightarrow$ subset blacks b\} (* MZ *)
returns $\left\{\left({ }_{-}, \ldots, \ldots, \operatorname{sccs} _n\right) \rightarrow\right.$ subset sccs sccs_n\} (* M3 *)

Graphs

type vertex
constant vertices: set vertex
function successors vertex : set vertex
axiom successors_vertices:
$\forall \mathrm{x}$. mem x vertices \rightarrow subset (successors x) vertices
predicate edge (x y: vertex) =
mem x vertices \wedge mem y (successors x)

Paths

inductive path vertex (list vertex) vertex =
| Path_empty:
$\forall \mathrm{x}$: vertex. path x Nil x
| Path_cons:
$\forall x$ y z: vertex, l : list vertex.
edge $\mathrm{x} y \rightarrow$ path $y \operatorname{l} \mathbf{z} \rightarrow$ path x (Cons x l) z
predicate reachable (x z: vertex) =
$\exists 1$. path x l z
predicate in_same_scc (x z: vertex) =
reachable x z \wedge reachable $z x$
predicate is_subscc (s: set vertex) =
$\forall \mathrm{x}$ z. mem $\mathrm{x} \mathrm{s} \rightarrow$ mem z s \rightarrow in_same_scc x z
predicate is_scc (s: set vertex) =
is_subscc s \wedge ($\forall \mathbf{s}^{\prime}$. subset $\mathrm{s} \mathrm{s}^{\prime} \rightarrow$ is_subscc $\left.\mathrm{s}^{\prime} \rightarrow \mathrm{s}==\mathrm{s}^{\prime}\right)$

Invariants (1/4)

predicate no_black_to_white (blacks grays: set vertex) =
$\forall \mathrm{x} \mathrm{x}^{\prime}$. edge $\mathrm{x} \times{ }^{\prime} \rightarrow$ mem x blacks \rightarrow mem x ' (union blacks grays)
predicate wff_color (blacks grays: set vertex) (s: list vertex) (sccs: set (set vertex)) = inter blacks grays = empty \wedge
(elements s) == union grays (diff blacks (set_of sccs)) \wedge (subset (set_of sccs) blacks) ^ no_black_to_white blacks grays

$$
\begin{aligned}
& \text { blacks } \bigcap \text { grays }=\emptyset \\
& \text { elements } s=\text { grays } \bigcup \text { blacks }- \text { (set_of sccs }) \\
& (\text { set_of } \mathrm{sccs}) \quad \subseteq \text { blacks }
\end{aligned}
$$

Invariants (2/4)

Invariants (3/4)

predicate wff_stack (blacks grays: set vertex) (s: list vertex) (sccs: set (set vertex)) =

```
wff_color blacks grays s sccs ^
```

simplelist s ^
subset (elements s) vertices \wedge
($\forall \mathrm{x}$ y. mem x grays \rightarrow lmem y s \rightarrow rank $\mathrm{x} \boldsymbol{s} \leq \operatorname{rank} \mathrm{y} s \rightarrow$ reachable $\mathrm{x} y) \wedge$
($\forall \mathrm{y}$. $\operatorname{lm} \mathrm{mem} \mathrm{y} \mathrm{s} \rightarrow \exists \mathrm{x}$. mem x grays \wedge rank x s \leq rank y s \wedge reachable y x)

Invariants (4/4)

Assertions

```
let m = rank x (Cons x stack) in
let (m1, b1, s1, sccs1) =
dfs' (successors x) blacks (add x grays) (Cons x stack) sccs in
if m1 \geqm then begin
    let (s2, s3) = split x s1 in
    assert{s3 = stack};
    assert {subset (elements s2) (add x b1)};
    assert{is_subscc (elements s2) ^ mem x (elements s2)};
    assert {\forally. in_same_scc y x }->\mathrm{ mem y (elements s2)};
    assert{is_scc (elements s2)};
    (max_int(), add x b1, s3, add (elements s2) sccs1) end
else begin
    (m1, add x b1, s1, sccs1) end
```


Assertions

assert $\{\forall \mathrm{y}$. in_same_scc y $\mathrm{x} \rightarrow$ mem y (elements s2) \};

- Coq proof: there exists x^{\prime}, y^{\prime} with $x^{\prime} \in s 2 \wedge y^{\prime} \notin s 2 \wedge$ edge $x^{\prime} y^{\prime}$ and x^{\prime}, y^{\prime} are in same strongly connected component as x

$$
y^{\prime} \in s 3=\text { stack }
$$

$x^{\prime}=x \quad$ impossible because $m 1 \leq$ rank $\mathrm{y}^{\prime} \mathrm{s} 1<\mathrm{rank} \mathrm{x}$ s1
$x^{\prime} \neq x \quad$ impossible because crossedge
$y^{\prime} \in \operatorname{sccs}$
impossible because sccs disjoint from stack
y^{\prime} is white

$$
\begin{array}{ll}
x^{\prime}=x & \text { impossible because successors are black } \\
x^{\prime} \neq x & \text { impossible because no black to white }
\end{array}
$$

Pre/Post-conditions (1/3)

let rec dfs1 x blacks (ghost grays) stack sccs = requires \{mem x vertices\} (* R1 *)
requires \{access_to grays x\} (*R2 *)
requires \{not mem x (union blacks grays) \} (*R3*)
(* invariants *)
requires\{wff_stack blacks grays stack sccs\} (* I1a*)
requires $\{\forall \mathrm{cc} . \operatorname{mem} \mathrm{cc} \operatorname{sccs} \leftrightarrow$ subset cc blacks \wedge is_scc cc\} (* $I 2 a *$)
returns $\left\{\left({ }_{-}, b, s, s c c s _n\right) \rightarrow\right.$ wff_stack b grays s sccs_n\} (* I1b *)
 (* post conditions *)

returns $\{(m, \quad, \quad s, \quad$) $\rightarrow m \leq \operatorname{rank} x \operatorname{s}\}(* E 2 *)$
returns $\left\{\left(\mathrm{m}, ~ _, \mathrm{s}, \mathrm{Z}\right) \rightarrow \mathrm{m}=\max\right.$ int () V rank_of_reachable m x s$\}$ (* E3 *)
raturns $\left\{\left(\mathrm{m}, ~ _, ~ s, ~,\right) \rightarrow \forall y\right.$. crossedgeto $s \mathrm{y}$ stack $\rightarrow \mathrm{m} \leq \operatorname{rank} y$ stack $\}$ (* E4 *) (* monotony *)
returns $\left\{\left(_, b, s, \ldots\right) \rightarrow \exists s^{\prime} . s=s^{\prime}++\right.$ stack \wedge subset (elements s') b\} (* M1 *)

returns $\left\{\left(\ldots, \ldots\right.\right.$, _ $^{\prime}, \operatorname{sccs} _$n) \rightarrow subset sccs sccs_n\} (* M3 *)

Full proof

- full proof is at http://jeanjacqueslevy.net/why3
- see the file why3session.html
- proof: 185 lines (38 lemmas) including the program texts.
- 82 proof obligations
all proved automatically by Alt-Ergo (1.30), CVC3 (2.4.1), CVC4 (1.4), Eprover (1.9), Spass (3.5), Yices (1.0.4)
except 5 of manually checked by Coq (8.6)
Coq proofs are 240 lines $(25+20+119+32+44)$

Towards imperative program

Assertions

```
let rec dfs1 x blacks (ghost grays) stack sccs sn num)=
requires{sn = cardinal (union grays blacks) ^ subset (union grays blacks) vertices}
(* invariants *)
requires {wff_num sn num stack} (* I3a*)
returns{(_, _, _, s, _, sn_n, num_n) -> wff_num sn_n num_n s} (* I3b *)
(* post conditions *)
returns{(sn_n, m, _, s, _, _, num_n) -> sn_n = m = max_int() V
\existsy. lmem y s ^ sn_n = num_n[y] ^ m = rank y s} (* E5 *)
    let m = rank x (Cons x stack) in
    let (n1, m1, b1, s1, sccs1, sn1, num1) =
        dfs' (successors x) blacks (add x grays) (Cons x stack) sccs (sn + 1) num[x \leftarrow sn] in
    if n1 \geq sn then begin
        let (s2, s3) = split x s1 in
        (max_int(), max_int(), add x b1, s3, add (elements s2) sccs1, sn1, num1) end
    else
        (n1, m1, add x b1, s1, sccs1, sn1, num1)
```


Assertions

predicate wff_num (sn: int) (num: map vertex int) (s: list vertex) = ($\forall \mathrm{x}$. num $[\mathrm{x}]<\mathrm{sn} \leq \max$ _int()) \wedge
$(\forall \mathrm{x}$ y. lmem x $\mathrm{s} \rightarrow$ lmem y $\mathrm{s} \rightarrow$ num $[\mathrm{x}] \leq$ num $[\mathrm{y}] \leftrightarrow$ rank $\mathrm{x} \mathrm{s} \leq$ rank y s)

Assertions

```
let rec dfs1 x blacks (ghost grays) stack sccs sn num =
    let m = rank x (Cons x stack) in
    let n = !sn in
    incr sn; num := !num[x \leftarrow n];
    let (n1, m1, b1, s1, sccs1) =
        dfs' (successors x) blacks (add x grays) (Cons x stack) sccs sn num in
        assert {n1 \geq n ↔ m1 \geqm}; (* *)
        if n1 \geq n then begin
        let (s2, s3) = split x s1 num in
        assert{s3 = stack};
        assert{subset (elements s2) (add x b1)};
        assert{is_subscc (elements s2) ^ mem x (elements s2)};
        assert {\forally. in_same_scc y x m mem y (elements s2)};
        assert{is_scc (elements s2)};
        (max_int(), max_int(), add x b1, s3, add (elements s2) sccs1) end
    else begin
        assert {\existsy. mem y grays ^ rank y s1< rank x s1 ^ reachable x y};
        (n1, m1, add x b1, s1, sccs1) end
```


Missing

- implementation of graphs
- vertices as integers in an array
- successors as lists for every vertex
- see http://jeanjacqueslevy.net/why3

Conclusion

Conclusion

- readable proofs ?
- simple algorithms should have simple proofs
to be shown with a good formal precision
- compare with other proof systems (without automatic provers?)
- further algorithms (in next talks ?)
- graphs represented with arrays + lists
- topological sort, articulation points, scck, sscT
- Why3 is a beautiful system but not so easy to use !

